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Abstract 

Sustainability in chemical processes is paramount to increasing sustainability across society. It is 

therefore important to include sustainability assessments throughout the design process, especially 

in the early stages. This is difficult, though, due to the lack of specificity and information at that point, 

which makes the evaluation of different sustainability metrics difficult. Improvements to 

sustainability become more difficult as the design progresses, however, as earlier decisions limit 

future research and considerations (Argoti et al.). Better analysis in these early stages is therefore 

necessary to overall sustainability with consideration for a multitude of factors that impact the 

processes and their chemicals’ environmental effects (Finnveden et al.). Machine Learning (ML) may 

be a critical tool in early-stage process design, as it has been shown to accurately predict the effects 

of novel chemicals despite little available information (Karka et al.). 

This work aims to develop a ML algorithm that accurately forecasts the effects of chemicals in the 

environment, especially in relation to human health, ecosystem quality, climate change, and resource 

utilization. It also introduces an innovative approach to cradle-to-cradle life cycle assessments 

wherein the solvent is reclaimed for future use in the disposal phase. The study employed XGBoost 

and artificial neural networks (ANN). Data was sourced from various chemical databases, including 

Ecoinvent, and the feature set included over 200 molecular descriptors and 23 thermodynamic 

properties for each element. A stepwise feature selection process was used to reduce the number of 

features from 223 to 10. Following hyperparameter tuning, the model’s performance was assessed 

on the test set using the R-squared and Root-Mean-Squared-Error (RMSE). To illustrate the model’s 

application, a case study was carried out on a cradle-to-cradle LCA of acetone. The gate-to-gate phase 

is modeled through the valorization of red wine pomace through solvent extraction, considering 

emissions during the use phase, including energy-related emissions and fugitive emissions from 

separation processes. Finally, the end-of-life phase of the acetone consisted of the recovery of the 

solvent through distillation for reuse. Any requests for access to the code files and documentation 

can be directed to the authors.  

Keywords: Machine Learning, Environmental Impact, Life Cycle Inventories, Sustainability  
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1. Introduction 

As of 2017, the chemical industry was the world’s second-largest manufacturing industry (UN 

Environment Programme, 2019). Between the years 2017 and 2030, the global chemical market is 

projected to double. The projected growth brings about concerns for the environment due to the 

associated growth in chemical waste with the growth in the market (US EPA, 2013). As with any 

manufacturing industry, there is waste associated with production due to inefficiencies in the 

process. In the case of the chemical industry, these inefficiencies can be attributed to inefficient 

mixing, the quality of the raw materials, and inappropriate process equipment being utilized, among 

others. A common way to quantify the amount of waste produced is using an E-factor (A. Sheldon, 

2007), as given by Equation 1. Table 1 presents a summary of different E-factors in the chemical 

industries. As shown in Table 1, the pharmaceutical industry is the main source of solvent waste due 

to the multiple purification steps associated with producing high purity active pharmaceutical 

ingredients (API).  

E-factor =  
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑤𝑎𝑠𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 (1) 

Table 1: E-factors in various industries (A. Sheldon 2007) 

Industry Tons of Product/Year E-factor 

Oil Refining 106-108 <0.1 

Bulk Chemicals 104-106 <1-5 

Fine Chemicals 102-104 5-50 

Pharmaceuticals 10-103 25-100 

Furthermore, the growing chemical market is an indication of the development of novel chemicals 

and processes. New chemicals often lack the data needed to accurately quantify their potential 

environmental impact, requiring experimentation or computationally intensive simulations to 

acquire them. These expensive and time-consuming methods can discourage many small-scale 

production facilities from being able to consider greener or safer alternatives.  

Additional impacts to the environment involve the wasteful use of solvents leading to the buildup of 

hazardous waste. With many solvents being treated as single use consumables, waste accumulation 

is bound to occur. To combat this, solvent recovery techniques can be utilized to purify and 

recirculate used solvent back into a process. Proper recovery techniques require proper analysis of 

the raw waste stream along with either purity or recovery specifications for the refined outlet stream. 

The selection of recovery technologies to achieve this goal can be performed through optimization 
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software to minimize cost and environmental impact of operation (Aboagye et al., 2021). To quantify 

environmental impact a life cycle analysis (LCA) needs to be performed on the raw materials and the 

resulting products.  

Life cycle analysis (LCA) is a systematic analysis of potential environmental impacts of raw materials, 

products, or services during their entire life cycle (Karka et al., 2019). Sustainability assessment (SA) 

is a complex evaluation methodology that involves integrated perspectives from environmental, 

economic, public health, social, and demographics that extend beyond the traditionally used pure 

technoeconomic analysis (TEA) (Sala et al., 2015). Both LCA and SA are data-intensive processes that 

can benefit from advanced statistics and machine learning (ML) methods. LCA and SA require life 

cycle inventory (LCI) data for all chemicals and technologies involved in a process, which is not 

readily available for new alternative chemicals, solvents, and technologies. Furthermore, scalability 

correlations for costs and emission factors, and operating parameters are essential to analyze 

alternative chemicals processed in novel technologies to compare them to traditional practices 

during the initial process synthesis and design stage (Mercado & Cabezas, 2016).  

ML has before been shown to help improve energy efficiency and predict carbon footprints of 

corporations (Narciso & Martins, 2020, and Nguyen et al., 2021). This work, though, aims to prove 

ML helpful in predicting accurate LCIA values for chemicals, especially for new molecules and process 

technologies. This innovative method can subsequently lead to safer, more sustainable alternative 

chemicals and circular process design. Predicting LCIA metrics and scale-up factors for 

environmental indicators at the preliminary stages of process design can be crucial for advancing 

green and sustainable processes for novel chemicals and processes. Specifically, using ML would 

allow for this data to be acquired without the time and cost commitment required currently. The 

proposed solution is to use data-driven approaches to predict the LCIA metrics of chemicals and to 

develop strategies to predict scaling factors. In this report, the first solution is reached by using 

machine learning approaches to predict LCIA metrics, specifically, endpoint impacts of solvents 

based on their thermodynamic and molecular properties. These properties have been used before to 

predict these impacts using mixed-integer programming, but this work aims to achieve better results 

using ML (Calvo-Serrano et al. 2017).  

This report is organized into four main sections. Section one is the introduction which discusses the 

motivation for this research. In section two, the methodology used in this research is described. 

Section three presents and discusses the results from the research. Finally, some conclusions and 

future works are presented in the last section. 
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2. Methods: Developing ML Algorithms for LCIA Metric Prediction 

This section first discusses the data collection step and corresponding data preprocessing 

techniques used. Next, the two ML algorithms used in this research are described, ending with a 

discussion about the steps involved in the tuning of the hyperparameters for each model. Figure 1 

presents the overall workflow, which is organized into two general steps: data preprocessing and 

model building.  

 

Figure 1. Overview of ML model workflow 

2.1 Data Collection  

To build any machine learning model, the first step is data acquisition. Developing a fast and reliable 

method for acquiring the necessary data is integral for model development because a vast amount of 

data is needed to train and test a ML model; Models trained with larger data sets make better 

predictions. To acquire this data with a reasonable amount of effort and time, the model uses an 

automated data collection process. The data acquisition step was divided into two main parts: the 

input feature dataset and the output label dataset. The features dataset is the independent input set 

from which a prediction is made. The label dataset is what the ML model is trying to predict. In this 
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work, the feature set is comprised of both thermodynamic and molecular descriptor properties of 

the chemicals, while the label dataset consists of four endpoint impact assessment metrics: human 

health impact (HHI), ecosystem quality impact (EQI), climate change impact (CCI), and resource 

utilization impact (RUI).  

Organic molecules are a majority of the chemicals in the CAS database; because of their prevalence 

in the chemical industry, a training set focused on organic molecules was used. In total, sixteen 

thermodynamic properties and two hundred molecular descriptors were collected, as well as each 

chemical's name, formula, CAS number, and SMILES structure. Priority was placed on properties that 

directly affected the energy costs of certain processes, such as heat of vaporization, enthalpies of 

formation, and boiling points. The three main python libraries used in feature extraction of the 

thermodynamic properties were the “chemicals”, “thermo”, and “pubchempy” packages. Each 

package connects to databases such as PubChem, National Institute of Standards and Technology 

(NIST), and other reputable and publicly available databases. To collect the molecular descriptors for 

our training set, the python package "rdkit" was used. RDKit is an open-source toolkit developed 

primarily for cheminformatics. Its core algorithms are in C++ but there are python wrappers such as 

packages developed that can be used to access the molecular descriptor of chemical provided the 

SMILEs code for the specific chemical is known. A total of 200 molecular descriptors can be collected 

from rdkit, which when combined with the 23 thermodynamic features described earlier yields 223 

features collected for 502 organic chemicals.  

The next step was to collect the corresponding life cycle impact assessment metrics for all the 350 

chemicals. As research progressed, multiple methods were used. SimaPro, a software which uses the 

Ecoinvent database, was used in the initial stages of this data collection task. SimaPro is a well-known 

software used for performing life cycle assessment of products and processes. In SimaPro, this 

project used Ecoinvent, cut-off by unit, as the base database. Once the production process of the 

chemical is obtained, the IMPACT 2002+ method of impact assessment was used to quantify the 

emissions, midpoint impacts, and the endpoint impact for the production process. In all analysis, a 

functional unit of 1 kg of the organic compound was used. Thus, from SimaPro the HHI, EQI, CCI, and 

RUI metrics for each chemical were acquired, giving a combined feature and label set of 220 (216 

features, 4 labels) with 350 data points. As data collection continued, direct access to the Ecoinvent 

database was used to add an additional 152 data points containing the same set of features to the 

training set, for a total of 502 data points. Table 2 is an example of the type of data extracted for the 

research endeavor.  
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Table 2: Example of data collected for each chemical 

Chemical 
Name 

Chemical 
Formula 

CAS # SMILES 
Heat of 

Vaporization 
(kJ/kg) 

Heat 
Capacity 
(kJ/kgK) 

Number of 
Hetero-
atoms 

Climate 
Change  

(kg CO2-eq) 

1-
BROMOPRO

PANE 

C3H7BR 106-94-5 CCCBr 32200 1.09 1 4.677 

1-CHLORO-
1,1-

DIFLUOROE
THANE 

C2H3ClF2 75-68-3 CC(F) 
(F)Cl 

20400 1.31 3 3.979 

1,1,1-
TRICHLORO

ETHANE 

C2H3Cl3 71-55-6 CC(Cl) 
(Cl)Cl 

29900 1.08 3 2.085 

1,1,2,2-
TETRACHLO
ROETHANE 

C2H2CL4 79-34-5 ClC(Cl) 
C(Cl)Cl 

44400 0.99 4 2.894 

1,2-
DIBROMOET

HANE 

C2H4BR2 106-93-4 BrCCBr 40030 0.72 2 0.934 

1,2-
DICHLOROE

THANE 

C2H4CL2 107-06-02 ClCCCl 35100 1.31 2 2.813 

1,2,4-
TRIMETHYL

BENZENE 

C9H12 95-63-6 Cc1ccc 
(C)c(C)c1 

47800 1.79 0 2.139 

1,3-
BUTADIENE 

C4H6 106-99-0 C=CC=C 20800 2.29 0 1.090 

1,3-
PHENYLENE

DIAMINE 

C6H8N2 108-45-2 Nc1cccc(N
)c1 

65400 2.56 2 18.584 

1,4-
DICHLOROB

ENZENE 

C6H4Cl2 106-46-7 Clc1ccc(Cl)
cc1 

46900 1.20 2 2.353 
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2.2 Clustering 

Once the data was obtained, further work needed to be done with it for the data to be optimal for the 

final machine learning model. Much of the data was missing and needed to be filled in since the model 

cannot use null values. A clustering algorithm was determined to be the best way to fill in the missing 

data, and the following flowchart describes the general process for creating a new dataset without 

any missing values.  

 

 

Figure 2. Flowchart describing general K-Means Clustering Process 
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The clustering algorithm used was K-means clustering. In the dataset, rows represent chemicals and 

columns represent the various thermodynamic properties and molecular descriptor values. Columns 

with missing data were temporarily removed to create a smaller dataset containing all the chemicals 

and a subset of the properties (where there were no missing data values). This subset was then fed 

into the algorithm to create different groupings of chemicals that the algorithm determined were 

similar. Once clustered, some chemicals appeared as outliers and were alone in a cluster. These 

chemicals were manually reviewed for error in the data scraping process. The algorithm was then 

rerun with the new fixed dataset. 

 

After looking at the graph of the accuracy of the clusters compared to the number of them, the elbow 

method was used to determine that the optimal number of clusters was between four and ten 

clusters. Nearly identical scripts were then made for each of the different clustered datasets. For 

example, when looking at the script where the chemicals were clustered into four groups, the 

algorithm sorted each of the five hundred chemicals into one of four groups based on the properties 

that they all had values for.  

 

After the now clustered subset of data is created, the columns with missing data are added back to 

the subset. The dataset is then split up by cluster (meaning if the data was clustered into four groups, 

then the dataset will be separated into four separate datasets).  

Within each separate dataset, the average for each column is then taken and replaces the missing 

data in that column. Every column in every separate data set undergoes this process, removing all 

empty data by replacing it with the column average in that cluster. Once this is complete, the separate 

datasets then recombine to create a new dataset with no missing values. The average values act as 

estimates for the missing data. 

 

To check the clustered values’ accuracy, the estimated density for fifteen different chemicals were 

chosen and compared to the known density values found in the DIPPR database. Density was chosen 

because it was a property where about half of the chemicals needed for it to be estimated and the 

known densities are readily available to cross compare accuracy with. Each script with a different 

number of clusters undergoes this process to determine the average percent error, and the one with 

the lowest percent error is determined as the most accurate and to be the data used moving forward. 

That final version is then ported back into an Excel file to be used by the ANN model.  
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As for the results of the clustered data, six clusters are optimal for the data obtained. When clustering 

the data into more clusters than six, there was too much missing data and some of the columns within 

clusters had no values to use for estimations. Using six clusters, the density values cross-referenced 

had an average percent error of 16.74%. While this is not ideal, it is a much better estimate than 

estimating the missing data without clustering it.  

 

2.3 Developing the ML Algorithm 

When training a machine learning model, the data must be split into a testing and a training set with 

also optionally a cross validation set. The training data is used to fit the model; this data is put into 

the program to create and adjust the variables used for the model to generate predictions. The cross-

validation set is then used for the program to compare the model fitted with the training data set. 

The program then runs the model with the cross validation set and adjusts the weights according to 

how accurate the predicted outputs are to improve the model. Finally, the testing set is used to run 

the model and compare the predicted outputs to the testing set’s known outputs to find the accuracy 

of the model.  

The ANN model for machine learning was used. It can be used for a wide variety of applications and 

is easily accessible for all Python users. The programming language chosen was Python because of 

its ease of usage, wide support community, and ability to interface with different programming and 

web service platforms.  

 

2.3.1 Artificial Neural Network (ANN) 

Figure 3 shows the architecture of an ANN. There is one input layer comprised of a number of nodes. 

Then there are hidden layers containing several nodes, of which the user can designate the desired 

number of layers and nodes in each layer. The last layer is the output layer, comprised of nodes which 

cannot exceed the number in the input layer. Additionally, the output layer should correspond to the 

number of labels you are trying to predict. Every node in one layer receives an input from all the 

nodes from the preceding layer, processes that information, and passes the outcome to the following 

layer (Géron, A, 2019).  
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Figure 3. Basic layout of neural network (Source: https://www.researchgate.net/figure/Artificial-neural-
network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051)  

Figure 4 shows how the ANN algorithm considers each node. Each connection has a weight, and the 

sum of the variable associated with the node and the weight associated with the connection, along 

with any bias constant added to the node, results in the node’s output. In ANN, the algorithm tries to 

minimize the objective function, which consists of a loss function, across each iteration. By specifying 

a loss function, which usually is the mean squared error, the model adjusts these weights to make 

predictions closer to the true value. Thus, by minimizing the mean squared error between the 

predicted value and the actual value based on the weight's adjustments, a good predictive model can 

be achieved.  

 

Figure 4.  Neural network algorithm (Source: https://subscription.packtpub.com/book/data/ 
9781788397872/1/ch01lvl1sec12/weights-and-biases) 

Using the default hyperparameters in the ANN algorithm, the model most often does not produce 

the best predictions possible. Therefore, these parameters must be adjusted to this specific case, 

https://subscription.packtpub.com/book/data/%209781788397872/1/ch01lvl1sec12/weights-and-biases
https://subscription.packtpub.com/book/data/%209781788397872/1/ch01lvl1sec12/weights-and-biases
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referred to as hyperparameter tuning to develop the best model. More information regarding the 

specifics of hyperparameter tuning is described in the following subsection. 

2.3.2 eXtreme Gradient Boosting (XGBoost) 

XGBoost is a decision tree model which utilizes gradient boosting to predict a single output with a set 

of inputs (XGBoost, 2022a). It is a supervised learning model consisting of an objective function to 

minimize comprised of a loss term and a regularization term. The loss term predicts the output, and 

some common functions used for this term are mean squared error and logistic loss. The 

regularization term deals with the model’s complexity to prevent overfitting. Two main types of 

models can be made: classification and regression. Classification deals with discrete variables while 

regression deals with continuous variables. Here, a regression model was used.  

Figure 5 shows the architecture for an XGBoost model. In XGBoost, the model runs with a training set 

and gets a prediction, calculating the loss of the prediction compared to the training output. Each leaf 

has a gradient statistic associated with it, and the set of statistics for the leaves along the path in the 

tree is used in the prediction through the objective function in the model. XGBoost assigns a weight 

to wrong predictions to preferentially improve that part of the model. Then it goes back and splits a 

leaf in two on the tree to try to improve the prediction. If the split improves the model above a set 

amount, producing enough gain compared to a given constant, it is added to the tree. This is also 

called a similarity score, meaning that if the new leaf is not similar enough to the old one and instead 

produces enough gain in the model then it is added. This part of XGBoost’s algorithm allows for 

pruning within the model. XGBoost uses an ensemble model, as illustrated in Figure 6, where one 

tree is added sequentially to minimize the error in the prediction and then the final prediction score 

is the sum of the trees’ scores. Too deep can lead to overfitting, and after many trees, adding another 

will not improve the prediction significantly.  
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Figure 5. Building an XGBoost model (Source: https://www.researchgate.net/figure/A-general-architecture-

of-XGBoost_fig3_335483097) 

2.3.3 Hyperparameters 

Hyperparameters are variables that help adjust the configuration of the model. Different algorithms 

use different hyperparameters, but there are some commonalities among hyperparameters across 

multiple algorithms. The most important hyperparameters regarding ANN models are the hidden 

layers, number of nodes, and step size. Hidden layers are shown previously in Figure 4 and act as the 

overall complexity and size of the model. The number of nodes in each hidden layer displays the size 

and complexity of each layer, and the rate that the model changes is the step size. These 

hyperparameters help improve the accuracy of the model and help prevent overfitting and 

underfitting. Overfitting occurs when the model is too complex for the amount of data, which makes 

it hyperfixate on the training data. This creates extremely high training accuracies but low testing 

accuracies. Underfitting is when the model is not complex enough for the data and is unable to 

understand the correlation between the inputs and outputs well enough to generate accurate 

predictions.  

In ANN, the recommended way to tune a neural network is first the hyperparameters and second the 

layers (Géron, A, 2019, pp. 320-327). Some important hyperparameters include the learning rate, 

units, batch size, epochs, and activation function. Units refers to the number of neurons within each 

layer. The batch size designates how many samples are run in a group. Epochs tell how many times 

the entire dataset is run through the model. The activation function determines which neurons are 

active in the model. Other examples of hyperparameters include which loss function to use and the 

https://www.researchgate.net/figure/A-general-architecture-of-XGBoost_fig3_335483097
https://www.researchgate.net/figure/A-general-architecture-of-XGBoost_fig3_335483097
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dropout rate (the rate that the neural network ignores different layers to create different versions of 

itself, which are then cross compared to see which is the most accurate).  

There are many ways to tune the hyperparameters, some of which include grid search, genetic 

algorithm, bayesian optimization, and hyperopt. These are all various methods to find the best 

hyperparameters for the model, and different methods are better for different situations.  

Details and results of the models can be found in section 3: Results and Discussion. 

3. Results and Discussion 

The raw data was imported from an Excel Sheet into a Pandas DataFrame. Some chemicals had 

missing data for various features, so the missing data was imputed using the K-means clustering 

algorithm described in Section 2.2. After testing the accuracy of the clusters, the results show the 

predictions made using the clustering algorithm were more accurate than with simple imputation 

methods or other algorithms. After filling in the missing data, the top five molecular and top five 

thermodynamic features were chosen to be used as the input variables in the regression. Over 200 

features were included in the data set, collected using the code described previously. The main 

benefits of narrowing down the number of features used in the model are to simplify the input data 

needed and to minimize the amount of data users would need to input to use the model for finding 

the LCI of their chemicals. Two feature selection tools were examined from the sklearn package: 

SequentialFeatureSelector and SelectFromModel. All statistics and accuracy numbers included in this 

results section use the SequentialFeatureSelector. Sklearn’s StandardScaler was used to scale the 

data, and the data was split into training, cross validation, and testing sets. The percentages for the 

split can vary, but the numbers included in this section use a 70/18/12 split, respectively. 

Additionally, any apparent outliers were removed; specifically, data for climate change, also referred 

to as global warming potential, greater than 20 kg CO2-eq were removed.  

3.1 Machine Learning Code: XGBoost 

In XGBoost after splitting the data, the training set was used to fit a regression model with an 

objective function using squared error. The model then used the cross validation set, called the 

“eval_set” in XGBoost, to improve the model’s fit. Previously, a principal component analysis (PCA) 

was used to attempt to improve the model, but it did not improve the predictions any of the metrics, 

as seen in Appendix A, and thus was not included in the final version. In some cases, it even worsened 

the predictions. The hyperparameters were tuned using the hyperopt package, and their final values 

are included in the code for each model. The hyperparameters used in the model were n_estimators, 
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learning_rate, max_depth, min_child_weight, subsample, colsample_bytree, and gamma. Verbosity 

was set to 0 and a random_state of 1 was used. Figure 6 shows the graphs of each of the four LCIs 

comparing the model’s prediction to the true value in the testing set, and the R2 and root mean 

squared error are also included in the graphs. Two variations of the code were produced, one 

organized using functions and the other organized using classes. When organized into classes, two 

classes were made, one to format the raw data and another to generate the model and analyze the 

predictions. The file organized using functions includes the most recent code.  

 

Figure 6. XGBoost model results for all Life Cycle Metrics 

The training set run through the model produced predictions very similar to the true values for all 

four of the LCI output features. The model where the testing set predictions most closely matched 

the testing set true values was for global warming potential, in which R2 was 0.727. That and human 

health, in which R2 was 0.700, were the best fit models, while ecosystem quality was a good fit with 

an R2 of 0.576. The resource utilization’s model did not have a good fit, with an R2 value of only 0.321. 
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3.2 Machine Learning Code: ANN 

In ANN after splitting the data, a model was fitted using the training data and cross validation set. 

The hyperparameters tuned were learning rate, units, batch size, epochs, activation function, and 

number of layers. The loss function used was mean squared error. The LCI value of Global Warming 

Potential was analyzed and shown in Figure 7, which also shows the root mean squared error and R2 

values. 

 

Figure 7. ANN model results for Global Warming Potential 

In general, the predictions using the ANN model found some correlation between the 10 properties 

input and the Global Warming Potential LCI estimation. The R2 for using ANN’s model was 0.525 for 

the testing set and 0.878 for the training set. The root mean-square error for the testing was 1.17 and 

0.878 for the training set. The testing set is much less accurate than the training set using both error 

methods, meaning that overfitting may be an issue. One other source of error may be from the data 

itself. With the clusters averaging 16.74% error combined with manual searching and changing of 

incorrect data, the data may not be entirely accurate to the true LCI values. Additionally, with each 

increase in total data (including both the number of chemicals and number of properties per 

chemical), the model’s accuracy increases. 

3.3 Case Study: Wine Pomace 

The LCI data from the machine learning algorithm can be used in conjunction with data from case 

studies in order to produce a more complete LCA analysis. There are three major life phases within 

a chemical’s lifespan: the production phase, the use phase, and the end-of-life phase. While both the 

use phase and the end-of-life phase can be modeled using ASPEN and SimaPro, the LCI for the 
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production phase cannot be easily modeled using traditional methods. As a result, the ML algorithm 

predicts the cradle-to-gate LCI data, which represents the production phase. By employing a case 

study as shown in Figure 8, it is possible to incorporate all a chemical’s life phases to produce a 

complete picture of the impact it has throughout its entire lifetime. The process selected as a basis 

for this case study analysis was published by Dr. Croxatto Vega et al. (2021) and describes a process 

involving the recovery of polyphenols from wine pomace. This process involved the grinding of wine 

pomace followed by the extraction of the polyphenols using a solvent comprised of 67%wt acetone. 

Following the extraction, the spent pomace was pressed and desolventized, with the vapors from the 

desolventizer entering a condenser. Meanwhile, the liquid stream from the presser entered a 

distillation column, where the acetone was separated from the polyphenols dissolved in water and 

was recycled along with the liquid from the condenser. The water-polyphenol mixture from the 

distillation column then entered both a nano filter and a spray dryer, with the mostly dry polyphenols 

serving as the final product for the process. Throughout the process, it is estimated that 2% of the 

acetone solvent is lost each cycle, requiring some solvent to be replenished each cycle.  

 

Figure 8: Process Flow Diagram for Extraction of Polyphenols from Wine Pomace 

To compare the data reported in the paper with the LCI data generated by the machine learning 

model, the basis of calculation for the paper’s energy and mass input data was converted from 

polyphenol to acetone. The energy and mass input data were then corroborated with data from 

SimaPro and Aspen to calculate the gate-to-gate LCI values. These gate-to-gate LCI values represent 

the impact the polyphenol extraction process had in its entirety, serving as a use case scenario for 
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acetone. Conversely, the LCI data from the machine learning algorithm was a cradle-to-gate analysis, 

serving as the production phase for acetone. The gate-to-gate global warming potential (GWP) 

derived from the paper is 15.0 kg CO2/kg Acetone, while the cradle-to-gate GWP derived from the 

machine learning algorithm is 1.90 kg CO2/kg Acetone. Additionally, since the only acetone leaving 

the process is through fugitive emissions, the end-of-life gate-to-grave GWP can be assumed to be 0 

kg CO2/kg Acetone. By using all of these values in conjunction, it is possible to complete a full cradle-

to-gate LCA for acetone, with a GWP of 16.9 kg CO2/kg Acetone.  This value paints a clearer picture of 

the impact that the acetone solvent has throughout its entire life span by being able to represent all 

three of its major life phases.  

 

Figure 9: Complete LCA Analysis Results 

4. Conclusions and Future Work 

In this study, the Machine Learning algorithms, XGBoost and Advanced Neural Networks (ANN), were 

used to create a program that predicts the environmental impacts of chemicals in the areas of human 

health, ecosystem quality, global warming potential, and resource utilization with the goal of creating 

a tool that can be used to predict the effects of novel chemicals. Data was collected from a variety of 

chemical databases including Ecoinvent and DIPPR, and missing data was imputed using K-means 

clustering. The data was collected in an automated fashion, allowing for the collection of copious 
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amounts of data, creating a more accurate and reliable model. Over 200 molecular descriptors and 

23 thermodynamic properties were analyzed, and a stepwise feature selection process was carried 

out to reduce the number of features from 223 to 10. An analysis of these properties was carried out 

to predict chemicals’ global warming potential (GWP, R2 =0.727), human health impact (HHI, R2 = 

0.700), ecosystem quality impact (EQI, R2 =0.576), and resource utilization impact (RUI, R2 =0.321) 

using XGBoost and global warming potential (R2 = 0.53) using ANN. Based on these results, the 

XGBoost algorithm provides a better prediction of the global warming potential of chemicals. An ANN 

algorithm will be developed and used to predict the HHI, EQI, and RUI of chemicals and the results of 

these studies will be compared to the predictions from XGBoost. 

A case study of acetone in wine pomace was also carried out to demonstrate the utility of the ML tool. 

This case study showed that the algorithm’s predictions can be used to substitute unknown data: 

where the cradle-to-gate LCI information was not available for acetone, the ML algorithm was able 

to fill in the gaps and predict this information, allowing for a complete cradle-to-grave analysis when 

combined with other known data for the gate-to-grave analysis. 

The models will continue to be improved through the extraction of more data, which can be achieved 

using databases like Ecoinvent that allow for efficient collection through automation. More data will 

allow the model to use chemical properties to find a better correlation, which will be demonstrated 

by an R2 closer to 1. Further work with this model includes the creation of emissions scaling 

equations that would allow for a better prediction of the effects of chemicals’ large-scale production 

on the environment for a variety of different chemical processes.  

A web-based graphical user interface (GUI) will also be created that would allow user-friendly access 

to the Machine Learning data and results outlined by this report. The tool would allow users to 

predict the environmental impacts of novel chemicals they are developing or producing, reducing the 

research and laboratory work required, thereby reducing the overall economic and environmental 

cost of process development. 
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